
Timing SDN Control Planes to Infer Network
Configurations

John Sonchack
University of Pennsylvania
jsonch@cis.upenn.edu

Adam J. Aviv
United States Naval Academy

aviv@usna.edu

Eric Keller
University of Colorado,

Boulder
eric.keller@colorado.edu

ABSTRACT
In this paper, we study information leakage by control planes of
Software Defined Networks. We find that the response time of an
OpenFlow control plane depends on its workload, and we develop
an inference attack that an adversary with control of a single host
could use to learn about network configurations without needing to
compromise any network infrastructure (i.e. switches or controller
servers). We also demonstrate that our inference attack works on
real OpenFlow hardware. To our knowledge, no previous work has
evaluated OpenFlow inference attacks outside of simulation.

1. INTRODUCTION
Software-defined networking (SDN) promises to transform the

way networking is done by opening up the interfaces to network
elements in a programmable way, and organizations such as Face-
book, Google, and the NSA have already deployed large scale SDN
networks. A key tenant of SDN is the separation of the control and
data planes in a network. The data plane forwards packets across
the network at high speeds by matching them against simple for-
warding rules, while the control plane installs rules into the data
plane and performs more advanced packet processing as needed
(e.g. when a switch cannot determine how to forward a packet).

Packet processing in the control plane is orders of magnitude
slower than packet processing in the data plane. These timing dif-
ferences can leak information about a network. Previous work has
shown how an adversary can leverage these timing differences to
infer whether a network runs OpenFlow [4], how large its switches’
forwarding tables are [3], and whether it contains links that aggre-
gate flows [2].

In this paper, we study a more sophisticated inference attack that
an adversary can use to learn more about a network. Our core ob-
servation is that control plane load affects how long the control
plane takes to process a packet. An adversary can time the control
plane while injecting packets into an SDN to determine whether the
injected packets are invoking the control plane even if the packets
do not evoke a reply from hosts in the SDN.

In contrast, previous SDN inference attacks could only deter-
mine whether legitimate requests to servers in the SDN went through

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

SDN-NFVSec’16, March 11 2016, New Orleans, LA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4078-6/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2876019.2876030

OpenFlow
Controller

Adversary
Host

Responding
Host

Test Packet
Stream

OpenFlow
Data Plane

Timing
Probes

Figure 1: A summary of the control plane inference attack: an
adversary sends probes that travel through the control plane
while sending test packets into the network. If the test packets
put load on the control plane, the probes will take longer to
return.

the control plane. By overcoming this restriction, this new attack
allows adversaries who control only a single host in an SDN to
learn more about the rules in a network’s forwarding table and the
controller’s logic. An adversary can use this knowledge to better
plan subsequent stages of attacks. For example, an adversary can
use our attack to learn short sequences of packets that cause the
controller to install forwarding rules, then later send many such
packet sequences to overload switch forwarding tables and degrade
the entire network’s performance.

In the remainder of this paper, we explain the inference attack
in more detail and demonstrate its feasibility on a testbed with real
OpenFlow hardware.

2. INFERENCE ATTACK OVERVIEW
Our threat model is based on an adversary that has root access

to a single host in a network and wishes to learn as much infor-
mation as possible about how the network operates without need-
ing to compromise any other devices on the network, including the
switchs and controller. This model reflects two scenarios: first,
an adversary performing a multi-staged attack that has just gained
access to one host in a network through malware or social engineer-
ing and now wishes to plan subsequent stages; second, a user of a
shared network or data center who wants to attack other users.

Figure 1 summarizes the attack. The adversary simultaneously
sends a stream of timing probes and a stream of testing packets
into the target network. The timing probes are pings to another
server in the network that are specially crafted to travel through
the control plane, and their round trip time (RTT) depends on the
control plane’s load. The test packets are spoofed packets that all
have the same value for one or more packet header fields. If send-
ing a stream of test packets causes the probe RTTs to increase, the
adversary can infer that the control plane is processing the testing
packets. By sending different test packet streams, the adversary can

Test Packet Streams:
test_packet_stream ::= 〈template, size, transmit_rate〉
Stream Templates:
template ::= 〈 header_field = field_value, ... 〉
Header Fields:
header_field ::= mac_source | mac_dest | ip_source |

ip_dest | ...
Header Values:
field_value ::= C (i.e. each packet in the stream will have the

same constant value C for this field)
| ∗ (i.e. each packet in the stream has a random value for this
header)
| ~C (i.e. the header field value for the ith packet in the stream
will be ~C[i])

Figure 2: Syntax for test packet streams.

learn about the network. For example, if probe RTT is low when
the adversary sends a stream of test packets with fixed source and
destination MAC addresses, but high while the adversary sends a
stream with the same destination MAC address but random MAC
source addresses, the adversary can infer that the control plane pro-
cesses packets with unknown source MAC addresses.

Timing Probes Timing probes allow an adversary to estimate how
long the control plane takes to respond to a request and, in turn,
how much load it is under. There are several ways to implement
timing probes. One approach, which we test in Section 3, is to use
spoofed ARP requests. In an OpenFlow network, MAC learning
is often implemented in the control plane: an OpenFlow switch
sends the first packet from each new MAC address to the controller,
which figures out what rule to install on the switch to forward future
packets to that address. If the adversary sends an ARP request to
another host on the network using a spoofed source MAC address,
the request and/or reply will be routed through the control plane,
and the RTTs of ARP request/reply pairs can be used to time the
control plane.

Alternately, if the OpenFlow controller is reachable from the data
plane (i.e. there is no isolated control network or VLAN), the ad-
versary can simply send an OpenFlow Echo message request to the
controller. The controller will reply with an Echo response contain-
ing the original Echo message. The RTTs of echo request/response
pairs can be used to time the control plane.

Test Packet Streams While measuring the control plane’s response
time with timing probes, the adversary injects streams of test pack-
ets into the network. If the packets in a test stream end up being
processed by the control plane, the RTT of the adversary’s timing
probes will increase. By setting one or more packet header fields to
the same value for all packets in a stream, the adversary can learn
which classes of traffic get processed by the control plane.

For example, if an adversary wanted to learn whether there was
a destination based forwarding rule installed in the data plane for
a host with a MAC address of 0x0A, they could send a test packet
stream with packets that all had a MAC destination address of
0x0A and random MAC source addresses. If the RTT of the timing
probes does not increase, the controller must not be processing the
test stream packets, implying that a destination based forwarding
rule is installed. On the other hand, if the timing probe RTT in-
creases, the controller must be processing the test stream packets,
implying that a destination based forwarding rule is not installed.

We specify test packet streams using the syntax in Figure 2. A
test packet stream has: a template that specifies the header values
of each packet in the stream; a size that specifies how many packets

OpenFlow
Controller

Adversary
Host (h1)

Network
Hosts

OpenFlow
Switch

(h2) (h3) (h4) (h5)

Figure 3: A diagram of our testbed network.

are in the stream; and a transmit rate that specifies how quickly the
stream should be sent into the network in packets per second.

3. EVALUATION
In this section, we evaluate the inference attack on a physical

OpenFlow testbed. We focus on the following questions:
• Can an adversary determine if test packets reach the con-

troller?
• Can an adversary determine if the controller is installing for-

warding rules in response to test packets?
• What higher level properties can an adversary learn about a

network using this inference attack?

The Testbed Figure 3 illustrates our testbed network. It con-
tains: a hardware OpenFlow switch, a Pica8 3290 with an Broad-
com Firebolt-3 forwarding engine that processes packets in hard-
ware according to OpenFlow rules, a 825 Mhz PowerPC CPU,
and 512MB of memory, and runs Debian 7; a control server, a
quad- core Intel i7 machine with 4GB of RAM, running Ubuntu
14.04 server LTS and the Ryu OpenFlow controller [1]. We con-
nected 5 hosts to the switch, which we refer to as h1 through h5.
The hosts had MAC addresses of 00:00:00:00:00:01 through
00:00:00:00:00:05, IP addresses of 1.1.1.1 through
1.1.1.5, and were connected to the physical ports 1 through 5
on the switch, respectively. Each host was a dual- core Intel Core-
2-Duo machines with 2GB RAM. All network connections (i.e.
switch to controller and switch to host) were via gigabit ethernet.

The Adversary The adversary controlled host h1, and could send
arbitrary raw packets into the network. To time the control plane,
the adversary sends ARP requests to host h5 at a rate of 4 per sec-
ond, using the technique described in Section 2.

Controller Logic The OpenFlow controller runs a simple MAC
learning application. When the network starts up, the controller
installs a low priority rule into the switch that sends each packet
up to the controller as an OpenFlow packet_in message that in-
cludes the ID of the port where the packet entered the switch. The
control application keeps a map from MAC addresses to ports,
which it fills using the source MAC address and input ports of the
packet_in messages from the switch. When the controller receives
a packet_in, it also check the MAC table for the destination MAC of
the packet. If the table contains the address, the controller installs
a rule onto the switch that forwards all packets with that MAC ad-
dress out of the associated port. Otherwise, the controller instructs
the switch to flood the packet.

Switch Logic To bootstrap the switch, we preinstalled the for-
warding rules depicted in Table 1. This models a scenario where

Source MAC Destination MAC Action Priority
* 00:00:...:02 Output on port 2 High

00:00:...:03 00:00:...:04 Output on port 4 High
* ff:ff:...:ff FLOOD Medium
* * Send to controller Low

Table 1: The testbed switch’s initial forwarding table. All
packet header fields not shown are set to wildcards.

0 200 400 600 800 1000
Test Stream Rate (packets / sec)

100

101

102

103

104

Co
nt

ro
l P

ro
be

 L
at

en
cy

 (m
s)

average
probe RTT

Figure 4: Timing probe RTT as test stream packet rate varies,
for test streams that are processed by the control plane.

some forwarding rules are installed (either by the controller or by
the network operator) before the adversary gains access to the host.

3.1 Are packets reaching the controller?
To determine the effect of packets reaching the control plane on

probe RTTs, we measured probe RTTs while sending a test packet
stream into the network from h1 that matched only the default send
to controller rule on the switch. We used the packet stream tem-
plate: <mac_source=00:00:...:0A, mac_dest=00:00:...:0B>).
Figure 4 shows probe RTT as the rate of the test stream varied in
seperate trials. There was a significant nonlinear relationship be-
tween probe RTT and test stream rate, with a jump from <10ms to
>500ms when the stream rate went above 550 packets per second.
Figure 5 shows probability density estimates for probe RTTs for
different test stream packet rates.

There was a statistically significant difference between the means
and variances of all three distributions, according to p-value tests.
In our testbed, an adversary would be able to determine if the pack-
ets in a test stream were reaching the control plane by comparing
the distribution of probe RTTs before sending the test stream with
the distribution of probe RTT’s while sending the test stream.

Learning about Forwarding Tables An adversary could leverage
this to learn about the rules installed in the switches’ forwarding
tables. For example, in our testbed, the adversary can learn that
there are forwarding rules installed to direct traffic from h1 to h2
but not h3 or h4 by measuring probe RTTs while sending no test
packets, and then, in separate trials, measuring probe RTTs while
sending test packet streams with templates:
<mac_source=00:...:01, mac_dest=00:...:02>;
<mac_source=00:...:01, mac_dest=00:...:03>;
<mac_source=00:...:01, mac_dest=00:...:04>;

Figure 6 shows the distributions of the RTTs for each test packet
stream. The test packet stream to h2 did not cause a statistically
significant shift to the RTT distribution, indicating that the switch
must have handled the packets without forwarding them to the con-
troller. However, the test packet streams to h3 and h4 caused a
statistically significant shift to the distribution, indicating that the
packets did not match a rule and ended up in the control plane.

0 2 4 6 8 10
probe RTT (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ob

ab
ili

ty
 D

en
si

ty
 E

st
im

at
e

test stream rate = 20
test stream rate = 250
test stream rate = 500

Figure 5: Probe RTT distribution estimates with test streams
of different rates that get processed by the control plane.

0 2 4 6 8 10
probe RTT (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 D

en
si

ty
 E

st
im

at
e

No Shift

Shift

baseline (no test stream)
test stream: h1 to h2
test stream: h1 to h3
test stream: h1 to h4

Figure 6: Probe RTT distribution shifts when the adversary
sends test streams with no matching forwarding rules.

Once an adversary knows that a forwarding rule exists in the net-
work, they can figure out which fields of the rule are wildcarded by
sending test streams that each randomize one field of the base test
stream that matches the rule. If the rule contains a wildcard for a
field, the packet stream with that field randomized will not increase
the timing probe RTT statistics. If the rule does not contain a wild-
card for the field, the timing probe RTT statistics will increase.

Table 2 shows probe RTT statistics while randomizing differ-
ent fields of test stream templates that match forwarding rules on
the switch in our testbed. The probe RTT and variance remains
low when the mac_source field of the first test flow is randomized,
which indicates that the rule forwarding traffic to 00:...:02
must have its mac_source field wildcarded. Randomizing any
other field in either stream results in a higher probe RTT and vari-
ance, which indicates that the forwarding rules must require exact
matches in those fields.

Example Use: Attack Planning If a network’s forwarding rules
match on both the source and destination, an adversary can build a
communication graph for the hosts in the network by checking for
rules that forward packets between each pair of hosts. Hosts that
have many edges in the communication graph (i.e. communicate
with many other hosts) may be critical to the network and an ideal
target for DoS attacks, while hosts with few edges may be less fre-
quently used and an ideal target for the adversary to infect while
minimizing disruption to the network.

3.2 Is the controller installing forwarding rules?
To determine the effect of the controller installing a forward-

ing rule on the switch, we measured probe RTTs while sending a
sequence of two test packet streams that cause the MAC learner

base template: <mac_source=00:...:01, mac_dest=00:...:02>
field randomized probe RTT average probe RTT variance

mac_source 3.64 0.46
mac_dest 12.11 11.57

base template: <mac_source=00:...:03, mac_dest=00:...:04>
mac_source 11.37 9.31
mac_dest 10.62 9.11

Table 2: Probe RTT statistics while sending test streams with
different packet header fields randomized.

0 50 100 150 200
Test Stream Rate (packets / sec)

100

101

102

103

104

105

Co
nt

ro
l P

ro
be

 L
at

en
cy

 (m
s)

average
probe RTT

Figure 7: Probe RTT as test stream packet rate varies, for a
test stream where each packet invokes a rule installation.

on the controller to install one rule for each packet in the sec-
ond test stream. More specifically, we generated two vectors of
MAC addresses: ~S and ~D, each of which had 1000 unique ran-
dom MAC addresses. We then sent a stream with the template
<mac_source=~S, mac_dest= ~D> The switch forwarded each packet
of the stream to the controller, which added the mac_source to its
local table that maps mac addresses to physical ports and then in-
structed the switch to flood the packet. Next, we send a stream
with the reverse template: <mac_source= ~D, mac_dest=~S> .
The switch also forwarded each of these packets to the controller.
However, since the controller knew the location of each destination
mac address (due to the first stream), it installed a forwarding rule
onto the switch for future packets with that destination mac.

Figure 7 shows the RTT of the timing probes during the sec-
ond test stream, as test stream rate varies. Each packet in this
stream caused the controller to install a forwarding rule. These test
streams shifted probe RTT statistics much more than test streams
that caused the controller to process packets without installing rules
(i.e. those depicted in Figure 4). Even a slow test stream that caused
60 flow rules per second to get installed increased the probe RTT
by approximately 100ms, for example.

An adversary on our testbed would thus be able to not only de-
termine if test packets are being processed by the control plane,
but also whether or not the control plane was installing rules in
response to those packets.

Learning about controller logic An adversary could leverage this
to learn about the controller’s logic. For example, in our testbed,
an adversary can learn which sequence of packets causes the con-
troller to install a rule that forwards traffic from a MAC src to
dest by performing trials that test different sequences of packet
streams. Table 3 shows two such trials. In each trial, the adver-
sary sends two low rate test streams that may or may not trigger
rule installations, and then one high rate test stream to determine
if rules were installed. In the first trial, the latency for the third
stage is statistically higher, indicating that the first two stages could

Stream Template Rate RTT RTT
average variance

Trial 1:
<mac_source=~S, mac_dest= ~D> 50 4.09 1.57
<mac_source=~S, mac_dest= ~D> 50 4.22 2.05
<mac_source=~S, mac_dest= ~D> 500 12.72 11.59
Trial 2:
<mac_source= ~D, mac_dest=~S> 50 4.11 1.71
<mac_source=~S, mac_dest= ~D> 50 812.93 519.88
<mac_source=~S, mac_dest= ~D> 500 4.32 1.58

Table 3: Probe RTT statistics during two trials to determine
the sequence of packets that causes a rule to be installed. High
RTT followed by low RTT indicates that rules are installed.

not have caused rules to be installed. In the second trial, however,
the latency during the third stage is low, despite the high rate of
the stage. This indicates to an adversary that the first two stages
must have triggered rule installations that match packets in the third
stage’s stream; the high latency in the second stage confirms that
the controller is actively installing rules during that stage. Thus,
the adversary can infer that when the controller observes a packet
from x -> y followed by a packet from y -> x, it will install a
rule forwarding y -> x.

Example Use: DoS Attacks OpenFlow switches store forwarding
rules in TCAM memory that allows them to match packets quickly.
TCAM memory is expensive and power hungry, so modern Open-
Flow switches can only store up to approximately 10,000 forward-
ing rules in TCAM. Any additional rules are put into tables in stan-
dard memory, and matching packets against these rules is much
slower. If an adversary learns the sequence of packets that causes
the controller to install a rule, they can saturate TCAM flow tables
with a small number of packets and greatly degrade the network
performance of all hosts.

4. CONCLUSION
Control plane inference attacks allow adversaries to learn about

a SDN network without compromising its infrastructure. We de-
veloped a more advanced inference attack based on measuring the
control plane’s load, demonstrated that it is effective on real Open-
Flow hardware, and provided examples of how it can help adver-
saries stage more advanced attacks. As SDN adoption grows, we
believe that it is important to evaluate the potential of inference
attacks in real networks and work to develop practical defenses.

Acknowledgements We wish to thank the anonymous reviewers
for their input on this paper. This research was partially supported
by NSF SaTC grant numbers 1406192, 1406225, and 1406177.

5. REFERENCES
[1] Ryu. http://osrg.github.io/ryu/.
[2] R. Kloti, V. Kotronis, and P. Smith. Openflow: A security

analysis. In Network Protocols (ICNP), 2013 21st IEEE
International Conference on, pages 1–6. IEEE, 2013.

[3] J. Leng, Y. Zhou, J. Zhang, and C. Hu. An inference attack
model for flow table capacity and usage: Exploiting the
vulnerability of flow table overflow in software-defined
network. arXiv preprint arXiv:1504.03095, 2015.

[4] S. Shin and G. Gu. Attacking software-defined networks: A
first feasibility study. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined
networking, pages 165–166. ACM, 2013.

